X^2+(5x)^2=104

Simple and best practice solution for X^2+(5x)^2=104 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+(5x)^2=104 equation:



X^2+(5X)^2=104
We move all terms to the left:
X^2+(5X)^2-(104)=0
We add all the numbers together, and all the variables
6X^2-104=0
a = 6; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·6·(-104)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{39}}{2*6}=\frac{0-8\sqrt{39}}{12} =-\frac{8\sqrt{39}}{12} =-\frac{2\sqrt{39}}{3} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{39}}{2*6}=\frac{0+8\sqrt{39}}{12} =\frac{8\sqrt{39}}{12} =\frac{2\sqrt{39}}{3} $

See similar equations:

| -2+3.50x=3.25x+5 | | 15+x=-32 | | 3(13-2a)=-3+1a | | 4x​2​​−12x+9=0 | | 8(x-1)-2x=-(x | | 13x-9=19=16+x | | 67=x/800 | | -4x+125x=3+x+9 | | 5x^2-33=0 | | h(63)=−7(63) | | 3(7-2y)=2 | | 10x-8+4x=6x | | 2v+5v-8=3 | | |2g+6|+4=14 | | 5x-3(x-3)=-2+5x+5 | | 1/6y=-11 | | 6n-12+4n=8n | | x+6/8=-7 | | h(63)=−7(63 | | 1/3(4x-15+5x)=-5+3x | | 125t10−2t7=0 | | 7x-9=44 | | 4.3y+20=5.3y+9 | | 2x-2-12x-4=22 | | -4x+25+1x=2x | | 14+26m=35+19m | | -3x(3x-7)=-2(x+4)+1 | | (24x-24)-(-16x+-16)=-24 | | 8r+8=38r+13 | | 1212y=10y-10 | | 6(p+5)=66 | | 14x+17=2(x+3)(x+3)-5 |

Equations solver categories